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LONG-TERM GOALS 
 
1. Application of the inverse scattering transform (IST) to the time series analysis of laboratory and 
oceanic wave data. The approach may be viewed as a generalization of linear Fourier analysis and 
is loosely referred to as "Nonlinear Fourier Analysis or Generalized Fourier Transform" (GFT).  
 
2. A major focus has been the application of IST to the study of “rogue, freak or giant” ocean waves. 
The emphasis has been on the study of the physical mechanisms leading to the generation of rogue 
waves in random sea states.  
 
3. A third long term goal is the development of fast algorithms for numerically integrating the 
space/time dynamics of deep-water wave trains. While IST is limited to the numerical/analytic 
integration of the so-called “soliton equations,” I have discovered how the GFT can be used to solved 
higher order equations for which study of the dynamics have previously been limited to numerical (as 
opposed to analytical) approaches. I discuss herein how the GFT can be used both for the analytical 
study and extremely fast numerical integration of the extended nonlinear Schroedinger equation for 
fully three dimensional wave motion. I discuss a number of considerations for the development of 
extremely fast GFT algorithms, which I refer to as the xGFT. 
 
OBJECTIVES 
 
1. The objective of the present research program is the development of fast numerical 
multidimensional Fourier techniques applied to a wide range of wave modeling and analysis 
problems. 
 
2. Important progress made in the past year has been the development of new algorithms for 
multidimensional Fourier analysis. These algorithms are the key to future hyperfast applications of 
the method.  
 
APPROACH 
 
The nonlinear modeling project that I discuss herein is quite new and, remarkably, has an overall 
structure as seen in Fig. 1. Basically this means that the first step consists of a preprocessor part which 
determines the nonlinear time evolution of the linear Fourier spectrum, i.e. it computes the linear 
Fourier spectrum at some large number (say N ~ 1000 ) of desired time steps (one normally takes a 
sufficient number of time steps to make a movie for studying the nonlinear wave behavior). The 
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second step is to take the inverse FFT of the time varying Fourier transforms. Additionally the 
mathematics (soliton theory, Riemann theta functions and algebraic geometry) is not that ordinarily 
studied by physical oceanographers and this may be an impediment that could test the patience of 
those who might want to apply the method (see for example the book by [Baker, 1897]). As we shall 
see however, the speed gains are quite dramatic, i.e. two or three orders of magnitude faster than the 
direct numerical integration of nonlinear wave equations by the FFT. The preprocessor is unique for 
each integrable wave equation as discussed in detail below. Furthermore, for each nonintegrable 
equation a sub-processor must be added as shown in the blue box of Fig. 1. 

We first consider the Kadomtsev-Petviashvili (KP) equation  
 

ηt + coηx +αηηx + βηxxx + γ  ∂x
−1ηyy = 0

      (1) 
 
Here η(x, y,t)  is the wave amplitude as a function of the two spatial variables, x ,  and time, t. The 
KP equation (1) is a natural two-space-dimension extension of the KdV equation. The periodic KP 
solutions include directional spreading in the wave field:  

y

 

η(x,t) = 2 ∂2

∂x2 lnθ(x, y, t |B,K,Ω,Φ)
                  (2) 

 
Here the generalized Fourier series has the form given in (4) below, where the phase has the two 
dimensional expression: 
 

X(x, y, t) = Kx + Ly− Ωt − Φ        (3) 
 

Here the spatial term Kx  has been joined by the lateral spatial term L , which allows wave spreading 
to be taken into account. The KP equation is the first nonlinear step toward a directional sea state; KP is 
however limited to small directional spreading. Improving the directional spreading characteristics of 
the KP equation requires the addition of physically important corrections to the equation: I give 
numerical examples below. 

y

The generalized Fourier series, θ(x, t | ˜ B ,k,ω,φ) , is given by the expression 
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   (4) 

 
where Xn = knx + lny −ωnt +φn . The function θ(x, y,t |B,φ)  is also called a Riemann theta function 
or multidimensional Fourier series. Here B is the Riemann matrix (the “spectrum” of the solution), the 
vectors k, l constitutes the usual wave numbers, the vector ω  contains the frequencies and the vector φ  
forms the phases. The inverse problem associated with (2), (3) allows one to determine the Riemann 
matrix, wave numbers, frequencies and phases appropriate for solving the Cauchy problem for KdV: 
Given the spatial variation of the solutions at t = 0, η(x, y,0) , compute the solution for all time, 
η(x, y, t) . This is a necessary step for the numerical simulations presented heein. The solitons, Stokes 
waves and sine waves lie on the diagonal of the Riemann matrix; the off-diagonal terms contain the 
nonlinear interactions. 
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Why is the above approach useful for hyperfast numerical simulations? Because the Riemann theta 
function can be programmed as a fast theta function transform (FTFT), just as the Fourier transform 
can be programmed as a fast Fourier transform (FFT). Therefore the numerical integration of KdV (1) 
can be evaluated at specific time points, necessary only for graphical purposes or for extracting useful 
properties of the sea surface. This contrasts to the FFT that must be evaluated at very small time steps 
when used for the numerical integration of a nonlinear partial differential equation. 
 
The unidirectional, deep-water case is governed by the nonlinear Schroedinger equation: 
 

i(ψt +Cgψx )+μψxx +ν ψ 2 ψ = 0       (5) 
 

where the coefficients are computed in the usual way in terms of the carrier wave number and 
frequency. The spectral solution to this equation is given by 
 

ψ(x,t) = aθ(x,t | B,δ− )
θ(x,t | B,δ+ )

e2ia2 t

       (6) 
 

Thus the solution is the ratio of two multi-dimensional Fourier series with different phases, δ± . 
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Fig. 1 Simple flow chart of the proposed numerical models for nonlinear  
partial differential equations with a well-defined dispersion relation. 
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For directionally spread waves in deep-water the nonlinear Schroedinger equation has the form: 
 

i(ψt +Cgψx )+μψxx − 2μψyy +ν ψ 2 ψ = 0      (7) 
 

An important result, fundamental in the present research program, is that the above relatively simple 
cases form building blocks for the solution to more complex equations such as the Boussinesq 
equations (see Fig. 1) and the full Euler equations (see below). Another important aspect, to be 
addressed in the coming year, is that variable shaped boundaries, variable bathymetry and wind and 
dissipation forces can be easily added to the above equations and to the Euler equations.  
 
WORK COMPLETED 
 
Up to this point I have not given any of the details of the nonlinear preprocessor in the new approach 
for obtaining numerical solutions to nonlinear wave equations. I will now do so, but without many of 
the mathematical details. First note that one begins with the Riemann theta functions and makes a 
transformation. One of the simplest types of transformation is given by (2). Second I will use the 
following result, i.e. that the theta function can be reduced to an ordinary linear Fourier series with time 
varying coefficients: 

θ(x, y,t) = θmn (t)eikm x+iln y+iφmn

n=−∞

∞

∑
m=−∞

∞

∑
      (8) 

 
Here the time varying coefficients θmn (t)  can be written analytically in terms of the Riemann matrix 
and phases. Note that the above expression is rather simple, i.e. it is just an ordinary linear Fourier 
series, which in numerical applications has ~ N 2  terms. The theta function itself is quite different in 
behavior for it has an exponential number of terms ~ 10N , which can be a huge number. Consider for 
example a case where N = 30 , i.e. 30 cnoidal waves in the spectrum. Then the number of terms in the 
theta function is far greater then the number of grains of sand on the earth, the number of galaxies in 
the universe, greater than Avogardro’s number and greater then the number of seconds since the big 
bang! Clearly the preprocessor has got to be pretty efficient to reduce 10 (~10 ) to ~N 30 N 2  (900)! I 
call the mathematical process to reduce the theta function onto the ordinary linear Fourier modes a 
“collapse” in analogy with quantum physics when one refers to the collapse of a wave function during 
the process of a physical measurement. Indeed we say that we collapse the theta function onto the 
linear Fourier modes. This process requires some knowledge of the algebraic geometry of theta 
functions [Baker, 1897] that I do not go into here. 
 
I now consider some interesting numerical results. To be concrete I have chosen the KP equation, i.e. 
directionally spread waves in shallow water that are distributed over relatively small angles. An 
example of a directionally spread wave train is given in Fig. 2. The significant wave height is 1.5 m and 
the water depth is 8 m. There are 20 cnoidal waves in the spectrum with a maximum modulus of 0.84 
(these are strongly nonlinear waves, but they are still less nonlinear than solitons which have a modulus 
of 1). Because the moduli of the spectral components is relatively large the waves are really Stokes-like 
in their shape, a result of the nonlinearities in the KP equation. 
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I now turn to the modified or extended KP equation, which I refer to as xKP. This equation is found 
from the KP equation by extending it an additional two orders of approximation beyond the KP 
equation and for many purposes xKP behaves essentially like the Boussinesq equation. To add this 
extended feature to the model in Fig. 1 we must of course add a time varying Riemann matrix and 
phases. To this end the model of Fig. 1 must be modified by adding the dynamics of the Riemann 
matrix and phases to the blue box.  
 
The numerical results for the Boussinesq model are shown in Figs. 3 and 4. One of the major new 
results which have come from these simulations is the appearance of a new kind of rogue wave which 
occurs only in shallow water wave dynamics and is not related to the Benjamin-Feir instability. 
Shallow water rogue waves of the type observed in the simulations occur due to strong nonlinear 
interactions between two or more cnoidal waves and in their simplest form are referred to as a Mach 
stem.  
 
The other major result is the small amount of computer time required for these simulations. The waves 
are significantly nonlinear with the ratio of significant wave height to water depth given by 
Hs / h = 1.5m / 8m = 0.1875  and the maximum wave height to depth is Hmax / h = 3.4m / 8m = 0.425 . 
The integration domain is 500 m by 500 m and has 128 x 128 spatial bins. A total of 500 time values 
were computed to make the film (I’ll send you a .avi file if you request it). The total cpu time was 1 
min 10 sec. This compares to a split-step FFT code which took 4.5 hours to compute the same problem. 
Thus the preprocessor multi-dimensional Fourier model which I have developed is about 230 times 
faster than the split-step FFT code. For a number of reasons which I will not mention here, I anticipate 
another order of magnitude improvement in computer time in the preprocessor part of the model over 
the next year or so. 
 

 
 

Fig. 2 Initial conditions for simulation of KP equation. The significant wave height is 
1.5 m and the water depth is 8 m. 
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Fig. 3 A large rogue wave of height 3.4 m in the Boussinesq (xKP) simulation. The 
significant wave height is 1.5 m. The rogue waves have maxima shown in red. 

 

 
 

 
Fig. 4 Another large rogue wave of height 3.3 m in the Boussinesq (xKP) simulation. 

The significant wave height is 1.5 m. 
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RESULTS 
 
The numerical model of the Euler equations uses particular transformations similar to (2) plus 
additional other mathematical machinery to simulate the wave motion simultaneously in terms of both 
the surface elevation and the velocity potential. There are three theta functions that have to be 
accounted for and collapsed onto the linear Fourier modes. One of the most important considerations is 
that the theta function now has a three dimensional form: 
 

 

θ(x, y, z,t) = qmeim.kx x+im.kyy+im.kzz−im.ω t+im.φ
m∈¢
∑

 
 
 

where the “nomes” are given by: 

qm = e
−

1
2

m.Bm
 

 
But in the formulation we need to evaluate this function at the free surface, z = η(x, y, t) . This gives for 
the theta function at the free surface: 
 

 

θ(x, y,η,t) = qmeim.kx x+im.kyy+im.kzη(x,y,t )−im.ω t+im.φ
m∈¢
∑

 
 
It is tempting to write: 
 

eim.kzη(x,y,t ) = 1+ im.kzη(x, y,t) −
1
2

(m.kz )2η2(x, y, t) −
i
6

(m.kz )3η3(x, y, t) + ...
 

 
which should converge provided that the wave steepness has the property 
 

m.kzη(x, y, t) << 1  
 
This can of course be substituted into the theta function to obtain 
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θ(x, y, z,t) = qmeim.kx x+im.kyy+im.kzη(x,y,t )−im.ω t+im.φ
m∈¢
∑ +

   +iη(x, y,t) m.kzqmeim.kx x+im.kyy+im.kzη(x,y,t )−im.ω t+im.φ
m∈¢
∑

−
1
2
η2(x, y,t) (m.kz )2 qmeim.kx x+im.kyy+im.kzη(x,y,t )−im.ω t+im.φ

m∈¢
∑

−
i
6
η3(x, y, t) (m.kz )3qmeim.kx x+im.kyy+im.kzη(x,y,t )−im.ω t+im.φ + ...

m∈¢
∑

 
 
These are the fundamental types of multi-dimensional Fourier series which appear in the formulation. 
 
A flowchart of the Euler equation simulation is shown in Fig. 5. In Fig. 6 we show the appearance of a 
rogue wave from one of the simulations in deep water. 
 
IMPACT/APPLICATION 
 
The impact of this research will occur in general for the nonlinear Fourier analysis of shallow and 
deep-water wave trains. Specific results will provide for a deeper understanding of nonlinear wave 
dynamics. 
 

9 



 
 
 

Fig. 5 Simple flow chart of the numerical model for the Euler Equations. 
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Fig. 6 A single-peak rogue wave with deep holes on the leading and trailing edges. The 
vertical scale should be multiplied by 10. The height of the wave is 46 m and has a wave 

length of 320 m. 
 

TRANSITIONS 
 
Transitions expected are related to the use of the codes as guidance to ships and unmanned, unteathered 
vehicles as the kind of environment in which one resides and for the real time sampling of the 
environment, including the acoustic environment. 
 
RELATED PROJECTS 
 
An intimate relationship between our results and other projects exists because the sea surface provides 
a major forcing input to many kinds of offshore activities, including the dynamics of floating and 
drilling vessels, barges, risers and tethered vehicles. The present work leads to a nonlinear 
representation of the sea surface forcing and vessel response for shallow water waves. 
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